
PREPRINT: WORK IN PROGRESS 1

Analogical and Relational Reasoning with Spiking
Neural Networks

Rollin Omari, R. I. (Bob) McKay and Tom Gedeon

Abstract—Raven’s Progressive Matrices have been widely used
for measuring abstract reasoning and intelligence in humans.
However for artificial learning systems, abstract reasoning re-
mains a challenging problem. In this paper we investigate how
neural networks augmented with biologically inspired spiking
modules gain a significant advantage in solving this problem.
To illustrate this, we first investigate the performance of our
networks with supervised learning, then with unsupervised
learning. Experiments on the RAVEN dataset show that the
overall accuracy of our supervised networks surpass human-
level performance, while our unsupervised networks significantly
outperform existing unsupervised methods. Finally, our results
from both supervised and unsupervised learning illustrate that,
unlike their non-augmented counterparts, networks with spiking
modules are able to extract and encode temporal features without
any explicit instruction, do not heavily rely on training data, and
generalise more readily to new problems. In summary, the results
reported here indicate that artificial neural networks with spiking
modules are well suited to solving abstract reasoning.

Index Terms—Raven’s progressive matrices (RPM), spiking
neural network (SNN), liquid state machine (LSM), unsupervised
learning.

I. INTRODUCTION

IN the field of Artificial Intelligence (AI), one of the most
important milestones is the construction of machines with

human-level reasoning abilities. To achieve this goal, various
datasets and tasks have been introduced into the field to enable
training and evaluation of AI systems within this scope. One
particular task that has become increasingly popular is the
training and evaluation of AI systems on Raven’s Progressive
Matrices (RPM). RPMs are one of the most popular instru-
ments for measuring abstract reasoning and fluid intelligence
in humans as they require subjects to solve problems in
the absence of physical objects, or concrete phenomena and
independent of their language, reading and writing skills, or
even their cultural background [1], [2].

As shown in Figure 1, an RPM consists of several visual
geometric designs with a missing piece. Given eight candidate
choices as the answer set, one has to determine the underlying
logical rules in the problem matrix and select the best choice
from the answer set that satisfies these hidden rules [3]. Within
the context of machine intelligence and in contrast to other

R. Omari is with the Defence Science and Technology Group, Australian
Department of Defence, Edinburgh, SA, 5111 Australia, and also with the
Research School of Computer Science, CECS, The Australian National
University, Canberra, ACT, 2601 Australia.

R. McKay and T. Gedeon are with the Research School of Computer
Science, CECS, The Australian National University, Canberra, ACT, 2601
Australia. (e-mail: {rollin.omari, robert.mckay, tom.gedeon}@anu.edu.au).

computer vision tasks [4], RPMs require that computers gen-
eralise about relations and attributes between abstract objects.
More importantly, RPMs require that computers make sense of
unforeseen patterns with limited amounts of data, and broadly
generalise acquired information to many tasks.

To help make progress towards solving RPMs with artificial
intelligence, we focus on simulating and evaluating rela-
tional and analogical reasoning in Artificial Neural Networks
(ANNs). Specifically, unlike existing methods that evaluate
machine intelligence on RPMs [5], [6], [7] or works that focus
on object representation and form recognition [8], [9], [10],
we decouple visual processing from our networks and aim
to directly emulate the reasoning capabilities of the human
prefrontal cortex [11]. However, beyond simply emulating the
human prefrontal cortex, we focus on two biologically inspired
neural networks, each using a different learning strategy.

In our first experiment, we focus on supervised learning with
a computationally light neurally inspired algorithm known as a
reservoir computer, implemented in the form of a Liquid State
Machine (LSM). An LSM is a neural network introduced by
Maass et al. [12] that consists of an input layer, a liquid layer,
and a readout layer. One advantage of an LSM is that the
synaptic connections in the liquid layer have an inherent time-
dependency, since any information the layer encodes fades out
over time [13]. A second, arising from their time-dependency,
is the ability of the recurrent connections in the liquid layer
to capture high-dimensional dynamic information. A third
advantage of an LSM is that all the synaptic connections,
other than those connecting to the readout layer, are randomly
initialised and remain fixed. Hence unique inputs will produce
distinct perturbations in the state of the high-dimensional
liquid layer, from which information can be extracted by the
readout layer [13].

In the context of solving RPMs with neural networks, we
demonstrate that these advantages make LSMs great candi-
dates, as RPMs inherently consist of unique high-dimensional
dynamic information. In particular, while using features ex-
tracted by the Dynamic Residual Tree (DRT) module [14],
our LSM model attains a testing accuracy of 93.30%, which
surpasses human-level performance (84.41%) and the current
sate-of-the-art performance (CoPINet, 91.42%) on the RAVEN
dataset [14].

In our second experiment, we focus on unsupervised learn-
ing with two Spiking Neural Networks (SNNs), each em-
ploying leaky integrate-and-fire (LIF) neurons with adaptive
thresholds. Both networks consist of an input layer and an
output layer, with recurrent connections in the output layer.
For the first SNN model, the forward connections between

ar
X

iv
:2

01
0.

06
74

6v
1 

 [
cs

.N
E

] 
 1

4 
O

ct
 2

02
0



PREPRINT: WORK IN PROGRESS 2

Fig. 1: An example of an RPM problem in RAVEN [14].
To complete the problem matrix, one has to select the best
choice in the answer set that follows structural and analogical
relations. In this problem, the positions, sizes, colours and
shapes can vary freely as long as the number of the shapes
follows the underlying rule.

the input and output layer utilise the standard Spike-Timing
Dependent Plasticity (STDP) learning algorithm, similarly for
the recurrent connections in the output layer. For the second
SNN model the forward connections between the input and
output layer are similar to the first SNN model. However,
the recurrent connections in the output layer utilise a learning
algorithm introduced by Hazan et al. [15], which combines the
local learning rules from STDP and the clustering properties
from a Self-Organizing Map (SOM) algorithm.

Beyond simply making contributions towards solving RPMs
with ANNs, our experiments with spiking networks illustrate
how spikes potentially play an essential role in information
processing and data representation in cognitive systems. In
fact, our spiking models attain testing accuracies of 54.15%
(SNN) and 71.04% (SSOM) without using features extracted
from the DRT module. When using features from the DRT
module, the models attain respective testing accuracies of
84.86% (SNN) and 93.23% (SSOM), drastically outperform-
ing the unsupervised MCPT method (28.50%). These results,
when taken into consideration with our LSM results, also indi-
cate how network architecture plays an essential role in solving
RPMs with ANNs and attaining human-level performance.

The remainder of this paper is organised as follows. In the
next section, we discuss related works in analogical reasoning
and computational efforts in generating and solving RPMs,
while Section III provides a formal description of solving
RPMs. In Section IV, we offer a detailed explanation of our
Liquid State Machine and Spiking Neural Network models.
In Section VI, we offer an explanation of our experimental
configurations, and report and analyse our results on the
RAVEN dataset. We finally conclude this paper with section
VII and offer remarks about future research.

II. RELATED WORK

In recent years, Raven’s Progressive Matrices have become
widely used to test the capability of abstract reasoning in

artificial neural networks. Inspired by John Raven, Santoro et
al. [5] released the first large-scale RPM dataset named Proce-
durally Generated Matrices (PGM), and introduced the Wild
Relation Network (WReN) as a potential method for solving
RPMs in this dataset. WReN was designed to formulate pair-
wise relations between the problem matrix and each individual
choice in an embedding space, however earlier versions of
WReN had limited generalization performance. Steenbrugge
et al. addressed this problem by incorporating a pre-trained
Variational Auto Encoder [16].

Recently, Zhang et al. [14] generated a new RPM dataset
named RAVEN and also introduced a Dynamic Residual Tree
(DRT) module that considers annotations of image structure
and thereby symbolizing a problem matrix. Following their in-
troduction of DRT, Zhang et al. also introduced a new method
known as CoPINet, which combines contrasting, perceptual
inference and permutation invariance [6]. More recently, Wang
et al. introduced a multiplex graph to capture multiple rela-
tions between objects [17], while Zhuo and Kankanhalli [7]
modified a ResNet-50 network with ImageNet pre-training to
reduce over-fitting, and they also proposed MCPT as a method
for solving RPM problems in an unsupervised manner.

III. PROBLEM FORMULATION

As mentioned in the introduction, an RPM is a task designed
to measure non-verbal, cognitive, and abstract reasoning. For-
mally, this task involves a problem matrix x consisting of
images {x11, x12, . . . , x33} and a corresponding answer set y.
Solving an RPM problem involves selecting the best answer
ya to complete the question matrix x, where a is the index of
ya and a ∈ {1, 2, . . . , 8}.

Given T training samples {(xi,yi, ai)}Ti=1 with xi ∈ X ,
yi ∈ Y and ai ∈ A, we aim to learn a function f over
(X,Y ) and A. In our implementation, all images in the
problem matrix and its corresponding answer set are stacked
together, and then fed into a neural network for the final
answer prediction. The learning method can be formulated as:

A = f(φ(X ∪ Y );w), (1)

where ∪ denotes the concatenation operation that stacks all
images in the question matrix and the answer set; φ represents
the image features over (X ∪ Y ); w is the parameter set to
learn. Given this formulation, an RPM problem can be treated
as a multi-class classification task.

IV. APPROACH

In this section we introduce our neural networks and their
respective learning approaches.

A. Feature Extractor

For our feature extractor, we use a ResNet-18 model with a
multi-layer perceptron (MLP) module. The MLP module has
an input layer configuration of 512× 100 and an output layer
configuration of 100× 8. We use an Adam optimiser to learn



PREPRINT: WORK IN PROGRESS 3

read files
(x72,000)

read file (x1) ResNet-18 MLP LSM/SNN

raw data
level 0

save features

level 1

load features

level 0

pass features

level 1

Fig. 2: Schematic for dataset processing and feature extraction. RPM images are loaded into a ResNet-18 network and processed.
The corresponding features for each RPM is extracted from the final layer of the ResNet-18 network, placed into a large array
and saved into a single file.

network parameters [18]. And we compute the cross-entropy
loss for each RPM with

CE(w) = −
n∑
c=1

ac log(pc), (2)

where w is the parameter set to learn, pc = fc(φ(xi∪yi);w)
is the model’s estimated probability for the class with label
c. The estimated probability pc is obtained by the model by
using the learned function fc, image features φ over the stack
∪ of the question matrix xi and its corresponding answer yi.

For the majority of our experiments, we use this feature
extractor as illustrated in Figure 2. However, for a few ex-
periments we place a DRT module between the ResNet-18
module and the MLP module, and use the extracted features
from the DRT module. For experiments in which DRT features
are utilised, we designate those models as “Model+DRT”,
and leave their designation as normal otherwise. By using
extracted features rather than raw images, we decrease the
running times for each of our models by about 200×, but
more importantly, we enable direct comparison of analogical
reasoning in models, without any interference from feature
learning.

B. Liquid State Machine

For our LSM, we use a three-layered network that consists
of an input layer, liquid layer and output layer. The input
layer is an array of M × N neurons, which corresponds to
the number of pixels of the input images, or more generally,
the number of features in the input. Each neuron in the input

layer is a spiking neuron that sets its spike occurrences v equal
to its respective inputs I(t):

τm
dv

dt
= I(t), (3)

where τm is the membrane time constant. In our case, the
spikes in the input layer are generated using a Bernoulli
spiking process, with average firing rate τ proportional to pixel
intensity [15]. This process continues for a specific duration
and the STDP rule is executed for connections between the
input layer and the liquid layer.

For the liquid layer, our LSM consists of K neurons whose
dynamics are modelled by a simple leaky integrate-and-fire
model [19]. Specifically, in the liquid layer, a neuron is
described as a simple resistor-capacitor circuit:

τm
dv

dt
= −v(t) +RI(t), (4)

where v(t) is the membrane potential at time t, and R is
the membrane resistance. To allow for actual spiking events,
this model is augmented with a spiking threshold vθ, where if
v(t) reaches this value, it is instantaneously reset to the resting
potential vr. To add some realism to this model, an absolute
refractory period is included, where immediately after v(t)
reaches vθ, v(t) is clamped to vr and the leaky integration
process starts again after a delay of a few milliseconds. For
connections in the liquid layer, we make these recurrent and
use the STDP learning rule for weight update.

Finally, for the output layer we use a simple sigmoid linear
regression layer that consists of K×L neurons, whose inputs
are spikes collected from the liquid layer. For the connections
in the output layer, we use Stochastic Gradient Descent (SGD)
and the mean squared error (MSE) loss to learn parameters.



PREPRINT: WORK IN PROGRESS 4

C. Spiking Neural Network

For our SNN, we use a two-layered network that consists
of an input layer and an output layer. For the input layer,
we use the same process as described in Section IV-B with
no additional changes. As for the output layer, we use a leaky
integrate-and-fire model with adaptive thresholds. The dynam-
ics for the neurons in the output layer are largely described by
Equation 4, however for details on the adaptive thresholds and
the remaining parameters used for this particular LIF model,
we refer the interested reader to [20].

The connections between the input layer and output layer
are as described in the previous section. As for the recurrent
connections in the output layer, we use the architecture and
unsupervised learning algorithm developed by [15]. Specif-
ically, the recurrent connections in the output layer combine
STDP and a self-organizing map algorithm. This unsupervised
learning algorithm encourages the output layer to self-organise
into distinct clusters by classes of data. Furthermore, the
output layer introduces inhibitory connections whose level of
inhibition increases in proportion to the square root of the
Euclidean distance between neurons [15].

V. EXPERIMENTS

In this section, we introduce the RAVEN dataset and im-
plementation details of both our supervised and unsupervised
approaches.

A. Dataset

To demonstrate the effectiveness of our methods, we eval-
uate them on the latest RAVEN dataset [14]. In total, the
RAVEN dataset consists of 1, 120, 000 images and 70, 000
RPM problems, equally distributed in 7 distinct figure con-
figurations: Center, 2x2Grid, 3x3Grid, Left-Right (L-R),
Up-Down (U-D), Out-InCenter (O-IC), and Out-InGrid (O-IG)
as shown in Figure 3. In addition, there is an average of 6.29
rules for each problem. To evaluate the reasoning ability of
machines, the RAVEN dataset also contains the results of
human-level performance. More details of the RAVEN dataset
are described in [14].

B. Implementation Details

To simulate our SNNs we use Python, BindsNET [21], an
NVIDIA Tesla T4 16GB GPU and an Intel Xeon Platinum
8259CL 16 Cores 2.50GHz CPU. Table I summarises the run
times for the majority of our experiments, from which we can
observe that using extracted features rather than the raw dataset
provides a 250× speed-up. For all our experiments, besides
using extracted features, we still follow the same experimental
format in [14]. Namely, the RAVEN dataset is split into three
parts, 6 folds for training, 2 for validation and the rest 2 for
testing. We train our models on the training set, tune the model
parameters on the validation set and report accuracy on the test
set.

For our feature extraction method, we use a mini-batch of
50 and an Adam optimiser with learning rate 10−4, and due
to the standard image resolution in ResNet [22], all images in

TABLE I: Elapsed real time comparisons for each of our
models for the two major types of experiments we conducted.
The networks are trained and tested on either extracted features
or the raw dataset.

Baseline Experiments
Model Extracted Features Raw Dataset
MLP 4 minutes 16 hours
LSM 3.35 hours 839 hours
SNN 4.15 hours 1038 hours
SSOM 4.34 hours 1085 hours

Generalization Experiments
MLP 1 minute 4 hours
LSM 29 minutes 121 hours
SSOM 36 minutes 150 hours
SNN 37 minutes 154 hours

the problem matrix and answer set are resized to a fixed size
of 224× 224. Besides resizing the images for ResNet, we do
not manipulate the dataset or use use any data augmentation
methods to manipulate the diversity of our training samples,
this is to ensure that all our comparisons are as fair as possible.

For our LSM, we use a mini-batch of 1 with the STDP
learning rule and a SGD optimiser with momentum to learn
network parameters in the liquid and output layer, respectively.
For the hyper parameters of our LSM, we have a threshold
value vθ of -52.0; a reset potential vr of -65.0; an absolute
refractory period ∆abs of 5 milliseconds; a voltage decay
constant τv of 0.99; and a simulation time step δt of 1.0
millisecond. For the SGD optimiser we use a learning rate
of 10−4 and a momentum value of 0.9.

For our SNN, we also use a mini-batch of 1, and to learn
network parameters, we use the STDP learning rule between
the input and output layer, and a hybrid STDP and SOM
learning algorithm for the recurrent connections in the output
layer. For hyper parameters, we use the same as those utilised
for the LSM with the addition of hyper parameter cinhib
which is multiplied by the distance of the neurons to compute
inhibition levels, and cmax, which is utilised to specify the
maximum allowed inhibition. For their values, we use 1.0 and
100.0 for cinhib and cmax, respectively.

VI. RESULTS

In this section, we report the performance of our approaches
and compare them with previous reports in the literature.

A. Comparison with Baselines

To demonstrate the effectiveness of our method, we report
all available results on the RAVEN dataset for comparison,
which include LSTM, CNN, ResNet, WReN and DRT. De-
tailed implementations of these baselines are described in
[14]. In addition, we compare our models to more recent
approaches, these include CoPINet [6], ResNet-50 [7] and
MXGNet [17].

Table II shows the testing accuracy of each supervised
learning model on the RAVEN dataset. We can observe that the
performance for solving RPMs heavily relies on the network
architecture. LSTM and WReN perform poorly on this dataset,
with only being slightly better than random guessing (12.50%).



PREPRINT: WORK IN PROGRESS 5

Fig. 3: Examples of 7 different figure configurations in the RAVEN dataset.

TABLE II: Testing accuracies for different networks using
supervised learning.

Network Testing Accuracy (%)
Random 12.50
LSTM [14] 13.07
WReN [14] 14.69
CNN [14] 36.97
ResNet-18+MLP [14] 53.43
ResNet-18 [7] 77.18
LSTM+DRT [14] 13.96
WReN+DRT [14] 15.02
CNN+DRT [14] 39.42
ResNet-18+MLP+DRT [14] 59.56
MXGNet [17] 83.91
ResNet-50 [7] 86.26
LSM (ours) 88.20
CoPINet [6] 91.42
LSM+DRT (ours) 93.30
Human 84.41

The CNN model obtains an accuracy of 36.97%, which is
still poor. By using a DRT module with a ResNet backbone,
ResNet-18+MLP+DRT obtains an increase in performance of
about 12% when compared to ResNet18+MLP. In contrast,
ResNet-18 from [7] outperforms ResNet18+MLP+DRT by a
large margin of 17.62% and achieves a testing accuracy of
77.18%. A potential reason for such a result is that replacing
the original 1000 fully connected layer in ResNet-18 with two
512 fully connected layers may reduce its testing accuracy.

In Table II, we can also observe that only four of fourteen
models surpass human-level performance, i.e., our LSM+DRT
(93.30%) model, the CoPINet model (91.42%), our standard
LSM model (88.20%) and the ResNet-50 model (86.26%).
The average percent difference between our best performing
model and the CoPINet model is about 2%. However note
that it was not possible to perform a standard statistical test
on this difference due to three reasons: (1) only one result
is available for CoPINet; (2) computational costs prevented
us from doing multiple runs with ResNet, i.e., we could only
do 30 runs with the LSM+DRT model; and (3) the results
from the multiple runs were not normally distributed, having
a Kolmogorov-Smirnov test probability of 0.264. Nevertheless
all 30 runs generated higher accuracy than CoPINet, with a
corresponding p-value of < 10−9.

From Table II we can finally observe that our standard LSM
model outperforms the ResNet-50 model without the need
of any extra pre-training on a large image dataset such as
ImageNet [7]. However, also notice that the best performing
models in Table II use additional network design, which
further emphasises the observation that solving RPMs may
heavily rely on network architecture and deep layers.

TABLE III: Testing accuracies for different networks using
unsupervised learning.

Network Testing Accuracy (%)
Random 12.50
MCPT (one-hot) [7] 20.55
MCPT (two-hot) [7] 28.50
SNN 54.15
SSOM 71.04
SNN+DRT 84.86
SSOM+DRT 93.23

For our spiking neural network, we take a similar approach
in reporting results as with our liquid state machine. We
compare our spiking neural network and its variants in Table
III with the only other previous unsupervised results on the
RAVEN dataset, i.e., the MCPT approach by [7]. From Table
III we can observe that the MCPT approach, either the one-hot
or two-hot variant, performs poorly. The one-hot variant only
gets a performance slightly above random guessing with an
accuracy of 20.55%, while the two-hot variant slightly doubles
random guessing with an accuracy of 28.50%. When compared
to our worst performing unsupervised model (SNN), we can
observe that our model outperforms the MCPT two-hot model
with a percent difference of about 56.38%.

Following a similar trend to the supervised methods, we
can observe in Table III that network architecture also plays
an important role in solving RPMs with unsupervised methods.
For instance, we can observe that using features from the DRT
module with our basic spiking model increases accuracy by
about 56.71%. We can also observe that hybridizing the STDP
learning rule with a SOM algorithm increases accuracy by
about 31.23%. This last observation is especially interesting
as it illustrates the importance of learning algorithms in solving
RPMs, at least with unsupervised methods.

From Table III we can observe that only two models achieve
or outperform human performance on the RAVEN dataset,
i.e., our SNN+DRT model (84.86%) and our SSOM+DRT
model (93.23%). However, we can observe that unsupervised
methods currently only achieve human-level performance by
relying on a module that incorporates domain knowledge. If
we were to compare the best performing “naive” unsupervised
model, i.e., a model which does not rely on any domain
knowledge, we can observe that there is a 13.37% difference
between that model (SSOM) and a human evaluated on
the RAVEN dataset. This observation clearly indicates that
our SSOM model has closed the gap between unsupervised
learning and human performance on the RAVEN dataset, but
there is plenty of room for improvement.

Finally, from Tables II and III we can observe that using



PREPRINT: WORK IN PROGRESS 6

TABLE IV: Generalization test. The networks are trained on
Center and tested on three other figure configurations.

Network Center L-R U-D O-IC
DRT [14] 51.87 40.03 35.46 38.84
ResNet-50 [7] 60.80 43.65 41.40 43.65
LSM 86.90 87.95 87.90 87.45
LSM+DRT 87.45 87.90 87.80 88.70
SNN 57.55 51.75 49.00 52.25
SNN+DRT 58.64 48.40 48.90 52.05
SSOM 69.90 50.05 49.30 53.85
SSOM+DRT 84.60 70.03 65.15 67.55

networks with recurrent spiking modules greatly improves
performance in solving RPMs. One possible explanation for
this is that spiking neurons can successfully perform multi-
category classifications by responding to each category with
unique output spike patterns. Furthermore, spiking neurons can
be sensitive to afferent spike timings, such that their output
spike patterns extract and encode temporal features without
any explicit instruction [23], [24]. In the context of solving
RPMs, we argue that these two properties alone clearly give
spiking modules an advantage.

B. Generalization Test

To measure how well our models trained on one figure
configuration and tested on other similar configurations, we
further test the generalization ability of our approaches on the
RAVEN dataset. Similarly to the experimental format in [14],
we evaluate our models with three kinds of configurations. The
first generalization experiment involves training the models on
Center and testing them on L-R, U-D and O-IC. The second
experiment involves training on L-R, and testing on U-D, and
vice versa. While the third experiment involves training on
2x2Grid and testing on 3x3Grid, and vice versa. Finally,
for our last experiment, we evaluate the performance of our
models with fewer training samples.

The first experiment attempts to measure the compositional
reasoning abilities of the models, as it requires them to learn
the rules from RPMs with single-component configurations,
and generalise them to RPMs with multiple independent but
similar components. In Table IV, we can observe that our
SNN, SSOM and our LSM models outperform ResNet-50
[7] and ResNet18+MLP+DRT [14] (denoted as DRT) on
generalization. We can also observe that except for our LSM
model, it is difficult for the other models to generalise to
more complex RPMs after being trained on simpler cases, i.e.,
generalizing from Center to L-R, U-D or O-IC.

The second and third experiments respectively attempt to
measure the transposition capabilities of the models and their
generalization capabilities when the number of objects change.
From Table V we can observe that our LSM model, when
not trained on DRT features, outperforms all other models on
transposition. However interestingly, when trained with DRT
features, the performance of the LSM model slightly declines
on transposition. A potential explanation for this is that the
DRT module may have slight biases for grid structured RPMs.
This explanation is further emphasised when we observe the
performance of the LSM model on 2x2Grid and 3x3Grid

configurations. Namely, in Table V, we can observe that the
LSM model outperforms all other models on object number
generalization, and attains high consistent performance when
trained with DRT extracted features.

Additionally, in Table V we can also observe that most
models struggle with generalization when they are trained on
simple cases but tested on complicated ones. In particular, we
can observe in Table V that most models attain slightly lower
accuracies when trained on 2x2Grid and tested on 3x3Grid
configurations. One exception to this observation is the SNN
model when trained with ResNet extracted features only, much
like humans the SNN model is able to solve complex problems
after training on simpler ones, however unlike humans, its
performance level is still relatively low.

Finally, in Table VI we can observe the results from our last
experiment. This experiment attempts to reduce the inherent
bias towards our models when comparing their performance
to those of human subjects. Namely, since human subjects
never experience the same intensive training as our models,
we consider any comparison between the two to be inherently
unfair. Hence, to reduce this bias and make the comparison
fairer, we report the performance of our models with fewer
training samples. In Table VI we can observe that our LSM
model, either trained with or without features extracted from
the DRT module, manages to achieve or surpass human-
level performance. More interestingly, with about 1/64th of
the training samples, our LSM model surpasses human-level
performance when trained with DRT extracted features and
does so with about 1/30th of the training samples when it is
not. Meanwhile, with about 1/8th of the training samples, our
LSM model easily achieves comparable accuracy to CoPINet,
when trained with features extracted from the DRT module.

From Table VI we can observe that a major advantage of
using spiking modules is their ability to learn a reasonably
good data representation while seeing only a small number
of examples. This observation is further emphasised when we
consider that our SNN models, either trained with or without
features from the DRT module, are asymptotic in accuracy
with about 1/30th of the training samples. Finally, the results
from Table VI also indicate that spiking modules are able to
develop appropriate filters quickly and gradually refine these
filters with increasing examples of training data.

VII. CONCLUSION

In this work, we attempt to solve RPMs with spiking mod-
ules, and investigate their performance with either supervised
or unsupervised learning. We perform extensive experiments
on the RAVEN dataset to verify the effectiveness of our
approaches and demonstrate how they significantly outperform
existing approaches. Furthermore, we show the advantage of
using biologically inspired modules, their inherent represen-
tational power and their ability to solve analogical reasoning
problems. More importantly, we show that unlike their non-
spiking counterparts, spiking modules are able to extract and
encode temporal features without any explicit instruction,
do not heavily rely on training data, and are more readily
able to generalize easier to new problems. From our various



PREPRINT: WORK IN PROGRESS 7

TABLE V: Generalization test. The networks are trained on Left-Right and tested on Up-Down, and vice versa. Additionally,
the networks are trained on 2x2Grid and tested on 3x3Grid, and vice versa.

Config DRT [14] ResNet-50 [7] SNN SNN+DRT SSOM SSOM+DRT LSM LSM+DRT
L-R U-D L-R U-D L-R U-D L-R U-D L-R U-D L-R U-D L-R U-D L-R U-D

L-R 41.07 38.10 60.95 57.15 51.30 46.40 41.20 48.55 74.75 75.80 75.60 76.75 86.95 88.60 86.90 87.90
U-D 39.48 43.60 59.20 63.75 53.50 57.05 44.65 42.15 73.45 70.10 81.80 74.65 88.20 88.25 86.90 87.90

2x2 3x3 2x2 3x3 2x2 3x3 2x2 3x3 2x2 3x3 2x2 3x3 2x2 3x3 2x2 3x3
2x2 40.93 38.69 35.90 35.55 50.55 52.30 50.70 49.60 64.70 62.90 81.55 80.10 87.20 84.55 88.80 87.95
3x3 40.93 38.69 35.90 35.55 52.05 53.95 54.45 54.25 71.40 69.25 82.95 82.45 88.65 87.15 88.80 87.95

TABLE VI: Model performance under different training set sizes, while test set size remains unchanged. The full training set
has 42, 000 samples.

Accuracy (%)
No. of Samples CoPINet [6] SNN SNN+DRT SSOM SSOM+DRT LSM LSM+DRT
658 44.48 47.04 54.19 47.94 60.90 71.01 87.51
1, 316 57.69 50.10 63.64 49.31 70.27 85.67 88.72
2, 625 65.55 50.86 68.40 53.83 74.32 86.64 91.14
5, 250 74.53 51.02 73.41 55.89 80.27 87.74 92.21
10, 500 80.92 54.60 78.76 56.02 84.24 87.84 93.26
21, 000 86.43 57.21 80.81 61.18 88.75 88.04 93.30

experiments, we hope that our results inspire further research
into spiking modules and solving RPM problems.

REFERENCES

[1] P. A. Carpenter, M. A. Just, and P. Shell, “What one intelligence test
measures: a theoretical account of the processing in the raven progressive
matrices test.” Psychological review, vol. 97, no. 3, p. 404, 1990.

[2] J. Raven, “The raven’s progressive matrices: change and stability over
culture and time,” Cognitive psychology, vol. 41, no. 1, pp. 1–48, 2000.

[3] G. Domino and M. L. Domino, Psychological testing: An introduction.
Cambridge University Press, 2006.

[4] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis,
“Deep learning for computer vision: A brief review,” Computational
intelligence and neuroscience, vol. 2018, 2018.

[5] A. Santoro, F. Hill, D. Barrett, A. Morcos, and T. Lillicrap, “Measuring
abstract reasoning in neural networks,” in International Conference on
Machine Learning, 2018, pp. 4477–4486.

[6] C. Zhang, B. Jia, F. Gao, Y. Zhu, H. Lu, and S.-C. Zhu, “Learning
perceptual inference by contrasting,” in Advances in Neural Information
Processing Systems, 2019, pp. 1075–1087.

[7] T. Zhuo and M. Kankanhalli, “Solving raven’s progressive matrices with
neural networks,” arXiv preprint arXiv:2002.01646, 2020.

[8] D. Liu and S. Yue, “Event-driven continuous stdp learning with deep
structure for visual pattern recognition,” IEEE transactions on cybernet-
ics, vol. 49, no. 4, pp. 1377–1390, 2018.

[9] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and transferring
mid-level image representations using convolutional neural networks,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 1717–1724.

[10] C. F. Cadieu, H. Hong, D. L. Yamins, N. Pinto, D. Ardila, E. A.
Solomon, N. J. Majaj, and J. J. DiCarlo, “Deep neural networks rival the
representation of primate it cortex for core visual object recognition,”
PLoS Comput Biol, vol. 10, no. 12, p. e1003963, 2014.

[11] D. C. Krawczyk, “The cognition and neuroscience of relational reason-
ing,” Brain research, vol. 1428, pp. 13–23, 2012.

[12] W. Maass, T. Natschläger, and H. Markram, “Real-time computing
without stable states: A new framework for neural computation based
on perturbations,” Neural computation, vol. 14, no. 11, pp. 2531–2560,
2002.

[13] N. Soures and D. Kudithipudi, “Deep liquid state machines with neural
plasticity for video activity recognition,” Frontiers in neuroscience,
vol. 13, p. 686, 2019.

[14] C. Zhang, F. Gao, B. Jia, Y. Zhu, and S.-C. Zhu, “Raven: A dataset
for relational and analogical visual reasoning,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 5317–5327.

[15] H. Hazan, D. Saunders, D. T. Sanghavi, H. Siegelmann, and R. Kozma,
“Unsupervised learning with self-organizing spiking neural networks,”
in 2018 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2018, pp. 1–6.

[16] X. Steenbrugge, S. Leroux, T. Verbelen, and B. Dhoedt, “Improving
generalization for abstract reasoning tasks using disentangled feature
representations,” arXiv preprint arXiv:1811.04784, 2018.

[17] D. Wang, M. Jamnik, and P. Lio, “Abstract diagrammatic reasoning with
multiplex graph networks,” arXiv preprint arXiv:2006.11197, 2020.

[18] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[19] W. Gerstner and W. M. Kistler, Spiking neuron models: Single neurons,
populations, plasticity. Cambridge university press, 2002.

[20] P. U. Diehl and M. Cook, “Unsupervised learning of digit recognition
using spike-timing-dependent plasticity,” Frontiers in computational
neuroscience, vol. 9, p. 99, 2015.

[21] H. Hazan, D. J. Saunders, H. Khan, D. Patel, D. T. Sanghavi, H. T.
Siegelmann, and R. Kozma, “Bindsnet: A machine learning-oriented
spiking neural networks library in python,” Frontiers in neuroinformat-
ics, vol. 12, p. 89, 2018.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[23] S. Guo, Z. Yu, F. Deng, X. Hu, and F. Chen, “Hierarchical bayesian
inference and learning in spiking neural networks,” IEEE transactions
on cybernetics, vol. 49, no. 1, pp. 133–145, 2017.

[24] Q. Yu, H. Li, and K. C. Tan, “Spike timing or rate? neurons learn
to make decisions for both through threshold-driven plasticity,” IEEE
transactions on cybernetics, vol. 49, no. 6, pp. 2178–2189, 2018.


	I Introduction
	II Related Work
	III Problem Formulation
	IV Approach
	IV-A Feature Extractor
	IV-B Liquid State Machine
	IV-C Spiking Neural Network

	V Experiments
	V-A Dataset
	V-B Implementation Details

	VI Results
	VI-A Comparison with Baselines
	VI-B Generalization Test

	VII Conclusion
	References

